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Abstract. A method is proposed for finding a prolongation structure in the Wahlquist- 
Estabrook sense without using the concept of prolongation. The closure of this structure 
follows unambiguously from the analysis of a holonomy algebra for a connection in a fibre 
bundle associated with a given non-linear equation. 

Wahlquist and Estabrook (1975, hereafter referred to as WE) proposed a procedure 
(the pseudopotential method) for finding the Lax pair (Lax 1968) for a given non-linear 
equation to be solved via the inverse scattering method (Gardner et a1 1967). The basic 
element of the pseudopotential method is a representation of a non-linear equation as a 
set of differential two-forms aa constituting a closed ideal of forms, with subsequent 
prolongation of it with a system of one-forms w which depend on auxiliary variables y 
(pseudopotentials). From complete integrability of the Pfaffian system w = 0 one 
obtains some (in general, open) algebraic structure (the prolongation structure). 
Embedding of this structure into a finite-dimensional Lie algebra or extracting from it a 
finite-dimensional Lie subalgebra leads to the appearance of a parameter h which 
serves as a spectral parameter in the associated linear problem. However, an appro- 
priate effective closure mechanism for the prolongation structure has not been revealed 
up to now. 

In the present paper a method is described for finding the WE-type algebraic 
structure which does not use the concept of prolongation. An unambiguous algorithmic 
way for introducing a spectral parameter based on the consideration of a holonomy 
algebra for a connection in a principal fibre bundle is proposed. An interrelation 
between the WE pseudopotentials and fibre bundle connections was pointed out by 
Hermann (1976). An approach based on fibre bundles was elaborated by Crampin et a1 
(1977), Dodd and Gibbon (1978) and Konopelchenko (1979). But these authors 
proceed from the known linear problem (the generalised Zakharov-Shabat (AKNS) 
problem (Ablowitz et a1 1974)), while the WE method is intended primarily for finding 
such a problem. It should be noted that Morris (1979) found the WE-type structure for 
some class of non-linear equations with two spatial dimensions. 

The present method will be illustrated on an example of a system of equations (Its, 
cited by Dubrovin et  a1 1976) 

For this system a linear problem and conservation laws are obtained. 
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We shall consider a system of non-linear evolution equations in two dimensions 
fx, t) of the form 

u p )  = K'"'(u, U,, U,,, . . . , a = 1 , .  . . , S (2) 

including derivatives with respect to x up to order n. Here K'"' is some set of 
(non-linear) functions of indicated variables and S is the number of equations in the 
system. For simplicity we assume the functions K'"' include the term with the highest 
derivative additively, i.e. K'"' = y ( " ) u ~ ~ ~ ,  + X'"'(u, . . . , u + ~ ) , )  where y'"' is a constant. 
Let us denote U, = u l ,  U,, = u 2 , .  . . , u ( , , ) ~  = un. Then following WE the system (2) can 
be represented as a set of nS two-forms 

ay) = du'"' A dt -  U?) dx A dt, . . . , CX??~ = duf?2 A dt - ~ f 2 1  dx A dt  
a(") = du(") (3) 

n n- l  A d t+  y'")-' du'"' A dx + y(')-lX'u' dx A dt 

which are annulled by a regular two-dimensional solution manifold S2(x, t) and 
constitute a closed ideal of forms. 

Let there be connected with the system (2) a principal fibre bundle P(M,  6) (Chern 
1956, Sternberg 1964) where M is a base manifold whose every point is represented by 

, z3+' = U?), . . .) and fi 
is a structure Lie group. If one represents locally a point b E P as ( z ,  s) where s stands 
for coordinates of a group manifold (fibre), then a connection one-form on P is written 
as (Chern 1956) 

2 an infinite set z = (2') = (z '  = x, z = t, z3 = U"' , . . .  , z2+' = U"' 

w ( b )  = O(s)+(Ad s-')A,(z) dz". (4) 

O(s) is a left-invariant one-form satisfying the Maurer-Cartan equation and the 
functions A,(z) ( p  = 1 , 2 , ,  . .) are defined on M. The summation convention is !sed. 
All the terms in (4) have their values in the Lie algebra g of the structure group G ;  in 
particular, w = wkLk, A, = ALLk (k  = I ,  2, . . , dim g), w k  and A;  are scalar-valued 
forms and functions respectively. Lk are generators of g and [ L I ,  ~ m ] =  c:mLk. 

The connection form of the type (4) with p = 1, . . . , 4  is used (Konopleva and Popov 
1972, Drechsler and Mayer 1977) for a geometrical description of the non-Abelian 
gauge fields. Bearing in mind this analogy, we shall call the A,  quasipotentials. 

The curvature two-form a =  dw +$[U ,  w ]  (Chern 1956) for the connection (4) has 
the form Cl =$(Ad s-')F,,, dz, A dz" where 

F,,, = a,A, - a,A, + [A,, A,,] a, = a/az, ( 5 )  

and the commutator is defined as [A,, A,,] = C:mA!+ArLk. 
We introduce now a vector bundle Q ( P )  associated with the principal fibre bundle 

P(M,  6) (Sternberg 1964). Here Q is an N-dimensional vector space in which a linear 
representation of G acts. The connection in P induces a connection in Q ( P )  which 
allows us to define a parallel transport. Namely, two Q vectors y(z) and y(z + dz)  in the 
points z and z + dz will be parallel if 

Y ( Z ) - Y ( Z  +dz)=A,(z)y(z)  dz'. (6) 

For brevity we do not make a distinction between A, in (4) and its representation in Q 
in (6) .  

Finally, a holonomy algebra h of the connection (4) is generated (Loos 1967) by all 
linear combinations of F,,,, VpFPv,  V,VpF,,,, .  . . , where V ,  is a covariant derivative, 
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V,F,, = a,F,, - [A,, F,,]. In the case where every element of h is a linear combination 
of F,, alone, the holonomy algebra is called perfect. 

We shall now show that the results of WE follow from the very special choice of a 
class of the connection forms (4). In fact, let us take 

A l = F ( u ,  ~ 1 ,  uZ, . . .) A2 = G(u, ui,  ~ 2 ,  . . .I A3=Aq=. . . = O .  (7) 
Then we get 

s 
R = (Ad s.-l) (F,y du?' A dx + G u y  du?' A dt+[F, GI dx A dt). (8) 

o= 1 

Here [F, GI = cf,F'GmLk. The summation over r is taken from 0 to 03 (U,,= U). F,cp) 
means a partial derivative dF/au?'. 

In a number of papers (Hermann 1976, Crampin et a1 1977, Crampin 1978, Dodd 
and Gibbon 1978, Konopelchenko 1979) it has been observed that a given non-linear 
equation with soliton properties can be connected with the vanishing curvature of some 
fibre bundle. As a consequence of this observation, we take the curvature form R to be 
a linear combination of the a?"s (3): 

where the p?) are some g-valued functions. On the solution manifold Sz the curvature 
R vanishes. Then we obtain from (9) a system of equations for the quasipotentials F 
and G which we shall call the Wahlquist-Estabrook equations: 

F = F(u)  G,,:?, = .Y(~'F,(-) Gu:<,+, = 0 i =  1 , 2 , .  . . 
(10) 

S 

u=l 
[F, G ] + D G -  K'"'F,(-)=O. 

Here D is the total derivative D = X m  (U:"' a/du(" '+  u p )  a/au:"' +. . .). The expansion 
coefficients p?' in (9) are expressed in terms of the quasipotential G :  ph"' = G,F). 

It should be stressed that, firstly, as distinct from WE, the quasipotentials F and G do 
not depend on the auxiliary prolongation variables and, secondly, the commutator 
[F, GI is defined by the structure constants. Hence, for the existence of the non- 
Abelian WE structure the structure group d must be non-Abelian. 

With a glance at the restriction (7)? the parallel transport equations which follow 
from (6) take the form 

yX = -0 Y, = - Gy. (1 1) 

The interpretation of the WE pseudopotentials as coordinates of a representation space 
of some group was proposed by Corones er a1 (1977). Equation (11) provides the 
explicit proof of this fact. 

Further analysis of the WE equations (10) demands a knowledge of concrete 
expressions for the functions K'"'. 

Let us return to the system (1). This system belongs to the class of equations of 
the type (2) with S = 2 ,  n =2 ,  K ' " = i u ~ ' + 2 u ( ' ' u ~ 1 ' + 2 u ~ z ) ,  K'2'-iu$2' 
+2(u"'u':' + ~ i ~ ' u ( ~ ' ) ,  The WE equations (10) have the form 
F = F ( u )  G = G(u,  ~ 1 )  Guy) = ( 1 )  Guy) = -iF (2) 

[F, GI+ u\*'G,(l)+ ~ ~ ~ ' G , ~ ~ ) + 2 i G , ~ ) ( u ' ~ ' u \ ' '  + U!'')- 2 i G , ~ ) ( ~ ' ' ) u ~ ~ '  + u ~ " u ( ~ ' )  = 0.  
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Following the well known procedure for solving similar equations and introducing the 
individual notations U“) = U, U(’) = v we obtain 

F = -i( uvXl + uX2 + vX3 + X4) 

G = -i{[v(2u2+ v) +i(ulv - U V ~ ) ] X ~  + (2v  + u2+iu1)X2 

+ (2240 - iv1)X3 + X5 + U v x 6  + uX7 - vX8}. 

Here X, = XkLk are g-valued constants of integration and Xk are numbers. These 
Xa’s define an algebraic structure 

Here the commutators are again defined via the structure constants: [Xa,Xp]= 

The structure (13) does not close itself into a finite-dimensional Lie algebra. To 
close this structure we consider now the holonomy algebra of the connection (4) with 
the restriction (7) .  The key step for closing uniquely the structure (13) is to demand that 
the holonomy algebra be non-Abelian and perfect, i.e. it must be generated entirely by 
Fwy. In the case under consideration the quantity Fwy (5) has the following non-zero 
components: 

F12 = [F, GI = - u1 G, - v1 G, - 2iG,,( uu l  + v l )  + 2iG,,( uvl  + u1 v )  

c fmXhXrLk. 

F13 = - a u F  F14 = - a v F  F 2 3  = -a,G F 2 4  = -avG 

F 2 5  = -a,, G F 2 6  = -aul G. 

With provision for explicit expressions for F and G (12) and for commutators with X1 
the holonomy algebra is generated by X2, X3, x6, X7, XS. In other words, we demand 
that these elements generate a non-Abelian Lie algebra, i.e. [X2, X,] = 
a2X2 + u3X3 + ~ 2 6 x 6  + a7X7 + u8X8, etc. After tedious but straightforward calculation 
using the Jacobi identities we obtain the following Lie algebra (A -= -as, XI commutes 
with all X,’s) 

x3 x4 x5 x6 x7 X8 

x2 x6 x7 AX7 x7 -AX6 
x3 xs AX8 0 -AX(j+xS -2x, 
x4 0 x, -AX7 -2x7 + AX8 
x5 AX8 -A2X7 -2AX7 + A2XS 
x6 AX6 - xs 2x6 
x7 -A ’x6 - 2x7 + hX8. 

This Lie algebra represents the unique possibility of closing the structure (13) compa- 
tible with the perfectness of the non-Abelian holonomy algebra. 

It should be stressed that the proposed way of closing is a purely computational one 
with a well defined line of attack. If it leads to closing the structure, then the 
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corresponding finite-dimensional algebra is unique. If such a holonomy algebra does 
not exist, other methods ought to be used. 

It is easy to see that the algebra obtained is ~ 1 ( 2 ) + 2 ' ~ '  where Z(4)  is the four- 
dimensional centre, and the X ,  are expressed in terms of a basis Y3,  Y ,  of sl(2) with 
commutators [ Y3,  Y+] = zt2 Y,, [ Y+, Y-]  = Y3 as follows: 

x -1 2 x -  2 - - 2 y 3  1 X3=-Y+ x 4-2AY3+ -1 Y- 5 - 2 A  Y3+AY- 

x , =  Y+ x , =  Y- X ,  = AY+- Y3. 

Realising sl(2) by means of 2 x 2  matrices, we find a 2 x 2  matrix realisation of the 
quasipotentials F and G : 

-i(u2-A2+iu1) -v(u +A)+ivl  ( u + A  ;( u2 - A' + iul) 
F = -i G = -i 

By virtue of (11) we therefore obtain the associated linear problem. Evidently, the 
dimension of the linear problem depends on the dimension of the sl(2) representatidn. 

The linear spectral problem y ,  = -Fy with F given by (14) does not belong to the 
AKNS type. Therefore, to obtain conservation laws there must be some modification to 
the results of Wadati et a1 (1975) concerning the derivation of conservation laws from 
the known linear problem. First of all, we write equation (11) in the Riccati form 

i r ,  = U +(U -A)r+r2 
It can be shown that the following relation holds: 

(r = Y1/y2): 

i r ,  = v ( u  + A )  - iv, +(U' - A 2  +iu,)r  + (U + A)r2. 

Expanding r in a series r=X:=l fflh-" we find from r =  (v +uI'+r2-iI',)A-1 a 
recurrence relation for ffl : 

fl-1 

fn+1  = VSOn + ufn + fkfn-k -ifnx. 
k = l  

The first three densities are the following: 
2 2 

f 1 =  v f 2  = uv - iv, f 3  = U v - 2iuv, - iuxv + v - vXX. 

Then the conservation laws follow from (15): 

a a 
- f n  =-(uffl+fflc1) 
at  ax 

n = l , 2 , .  . . . 

Thus far, the WE method has been applied to equations whose solutions go to zero 
sufficiently fast at infinity. Here we point out, on an example of the Korteweg-de Vries 
(KdV) equation, an interrelation between the quasipotentials F and G and the problem 
of finding solutions periodic in x. 

The quasipotentials for the KdV equation ut + U,,, + 12~1.4, = 0, as can be shown by 
the present method, have the form 
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and the linear spectral problem is the Schrodinger equation yXx + (A + 2 u ) y  = 0. Let the 
potential u be periodic in x with period T, i.e. there exists a monodromy operator 
(fy)(x) = y(x + T ) .  Let us fix a point xo and consider a basis in a space of solutions of the 
Schrodinger equation with the properties (Dubrovin et a1 1979) 

c = l  c, = 0 s = o  sx = 1 at x = xo. 

The monodromy operator in this basis is a 2 x  2 matrix f c  = a l l c  +alzs,  ?s = 
az lc  + a22s. Then a dependence of f on the parameter xo is given by the quasipotential 
F and time dependence is governed by the quasipotential G :  

d f / d t  = [G,  f]. a ?/ax0 = [F, f] 
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